Splanchnic tissues undergo hypoxic stress during whole body hyperthermia.

نویسندگان

  • D M Hall
  • K R Baumgardner
  • T D Oberley
  • C V Gisolfi
چکیده

Exposure of conscious animals to environmental heat stress increases portal venous radical content. The nature of the observed heat stress-inducible radical molecules suggests that hyperthermia produces cellular hypoxic stress in liver and intestine. To investigate this hypothesis, conscious rats bearing in-dwelling portal venous and femoral artery catheters were exposed to normothermic or hyperthermic conditions. Blood gas levels were monitored during heat stress and for 24 h following heat exposure. Hyperthermia significantly increased arterial O2 saturation, splanchnic arterial-venous O2 difference, and venous PCO2, while decreasing venous O2 saturation and venous pH. One hour after heat exposure, liver glycogen levels were decreased approximately 20%. Two hours after heat exposure, the splanchnic arterial-venous O2 difference remained elevated in heat-stressed animals despite normal Tc. A second group of rats was exposed to similar conditions while receiving intra-arterial injections of the hypoxic cell marker [3H]misonidazole. Liver and intestine were biopsied, and [3H]misonidazole content was quantified. Heat stress increased tissue [3H]misonidazole retention 80% in the liver and 29% in the small intestine. Cellular [3H]misonidazole levels were significantly elevated in intestinal epithelial cells and liver zone 2 and 3 hepatocytes and Kupffer cells. This effect was most prominent in the proximal small intestine and small liver lobi. These data provide evidence that hyperthermia produces cellular hypoxia and metabolic stress in splanchnic tissues and suggest that cellular metabolic stress may contribute to radical generation during heat stress.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Depletion of Serotonin Synthesis with p-CPA Pretreatment Alters EEG in Urethane Anesthetized Rats under Whole Body Hyperthermia

Serotonin is believed as an important factor in brain function. The role of serotonin in cerebral psycho-patho-physiology has already been well established. However, the function of serotonin antagonist in anesthetized subjects under hyperthermia has not been studied properly. Methods: Experiments were performed in three groups of urethane-anesthetized rats, such as: (i) control group, (ii) wh...

متن کامل

Inhibitory effects of hyperthermia on mechanisms involved in autoresuscitation from hypoxic apnea in mice: a model for thermal stress causing SIDS.

The physiological mechanisms that might be involved in an association between heat stress and sudden infant death syndrome (SIDS) are obscure. We tested the hypothesis that a combination of acute hypoxia and elevated body temperature (T(B)) might prevent autoresuscitation from hypoxic apnea (AR). We exposed 21-day-old mice (total = 216) to hyperthermia (40.5-43.5 degrees C), hypoxia, or a combi...

متن کامل

Temperature and blood flow distribution in the human leg during passive heat stress

The influence of temperature on the hemodynamic adjustments to direct passive heat stress within the leg's major arterial and venous vessels and compartments remains unclear. Fifteen healthy young males were tested during exposure to either passive whole body heat stress to levels approaching thermal tolerance [core temperature (Tc) + 2°C; study 1; n = 8] or single leg heat stress (Tc + 0°C; st...

متن کامل

Heat-shock response and limitation of tissue necrosis during occlusion/reperfusion in rabbit hearts.

BACKGROUND Induction of stress proteins, such as heat-shock protein 71 (HSP71), is associated with cardioprotection in isolated ischemic myocardium. We tested this hypothesis in rabbits pretreated with whole-body hyperthermia and then subjected to 30 or 45 minutes of regional coronary occlusion (CO) followed by 3 hours reperfusion (Rep). METHODS AND RESULTS Control rabbits did not undergo who...

متن کامل

Preoperative stress conditioning prevents paralysis after experimental aortic surgery: increased heat shock protein content is associated with ischemic tolerance of the spinal cord.

BACKGROUND All forms of surgical therapy are stressful and injurious. The problems of paralysis, renal dysfunction, and colonic ischemia associated with aortic occlusion are due to acute ischemia-reperfusion injury at the cellular level. Acute-anterior spinal cord ischemia is the most devastating outcome of these iatrogenic-ischemic events. The majority of surgical procedures are performed elec...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The American journal of physiology

دوره 276 5 Pt 1  شماره 

صفحات  -

تاریخ انتشار 1999